

Adaptive Context Encoding Module for Semantic Segmentation

Congcong Wang¹, Faouzi Alaya Cheikh¹, Azeddine Beghdadi², and Ole Jacob Elle^{3,4}

¹Norwegian University of Science and Technology, Norway.
²University Paris 13, France.
³Oslo University Hospital, Norway
⁴University of Oslo, Norway

Congcong Wang et al.

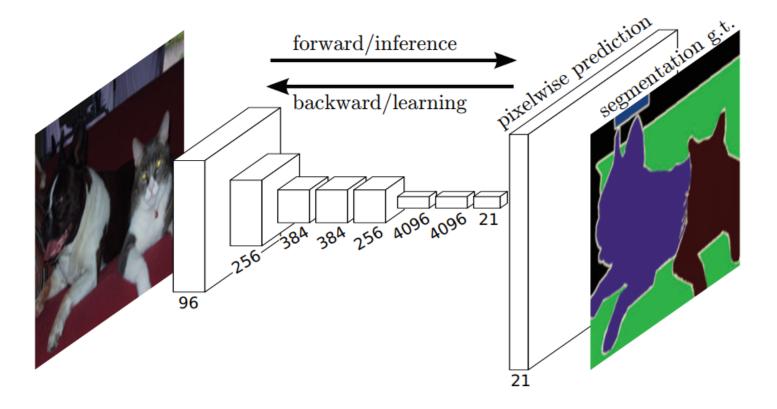
UNIVERSITÉ PARIS 13

Semantic Segmentation

- Semantic Segmentation
 - Understanding an image at pixel level
 - Partitioning an image into regions of meaningful objects
 - Comprehensive scene description: object category, location, etc.

Zhang et al. Context Encoding for Semantic Segmentation

Fully Convolutional Network (FCN)

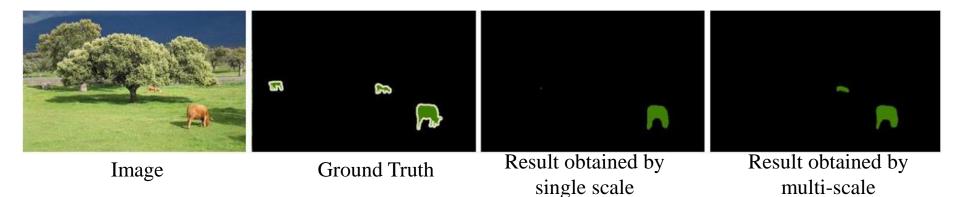


Long et al. Fully Convolutional Networks for Semantic Segmentation

- Pre-trained CNN + Decoder
- Trained end-to-end
- → Meta algorithm for semantic segmentation

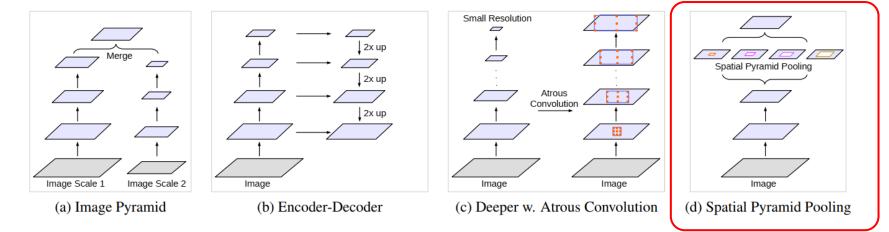
What problem we are addressing?

• The existence of objects at multiple scales.



• How to capture multiple scale information?

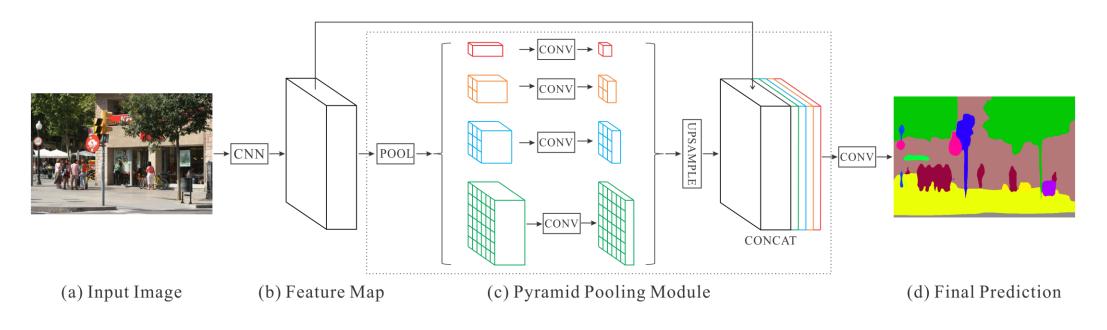
He et al. Adaptive Pyramid Context Network for Semantic Segmentation.



Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation

Prior work

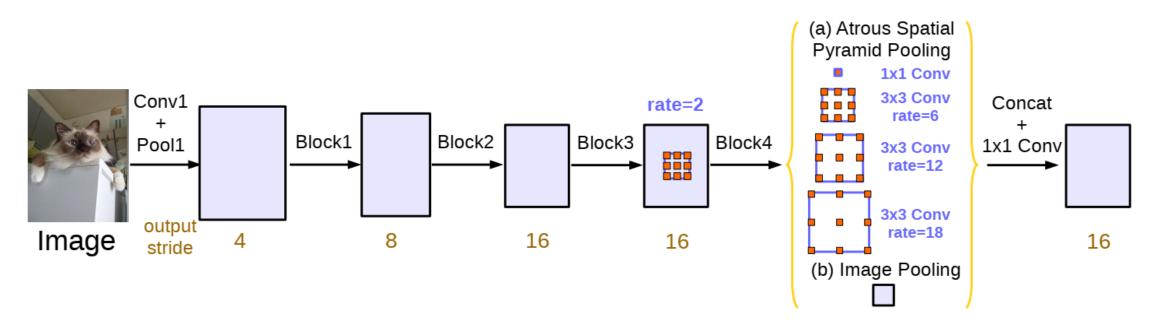
- Spatial Pyramid Pooling strategy
 - Pyramid Pooling Module (PPM) from PSPNet



Zhao et al. Pyramid Scene Parsing Network

Prior work

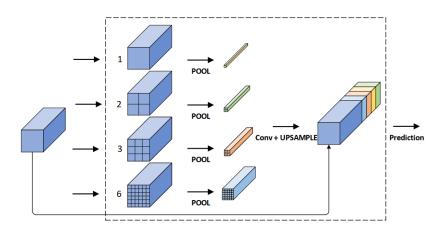
- Spatial Pyramid Pooling strategy
 - Atrous Spatial Pyramid Pooling from Deeplabs.

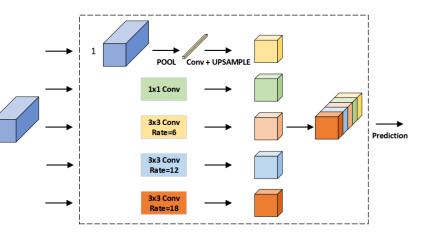


Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation

Prior work

- Two problems:
 - (1) The numbers of sub-region of PPM in PSPNet and the atrous rates of ASPP module from Deeplabs are selected empirically.
 - (2) PPM and ASPP both extract the context information by sampling from rigid rectangular regions which contain pixels from different object categories.

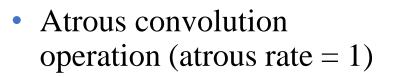


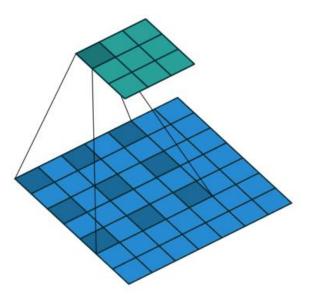


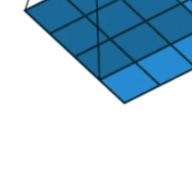
• How to solve the above two problem?

Rethinking ASPP

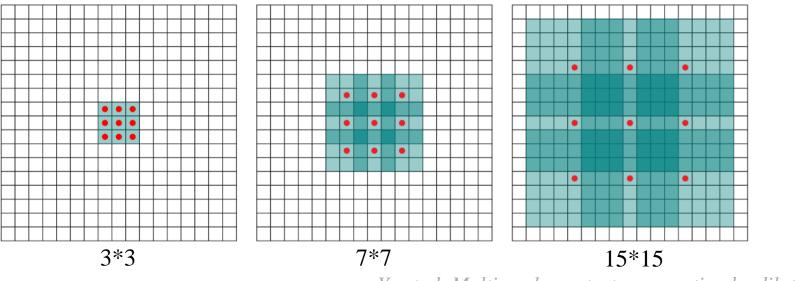
• Convolution operation (no padding, no strides)







Rethinking ASPP

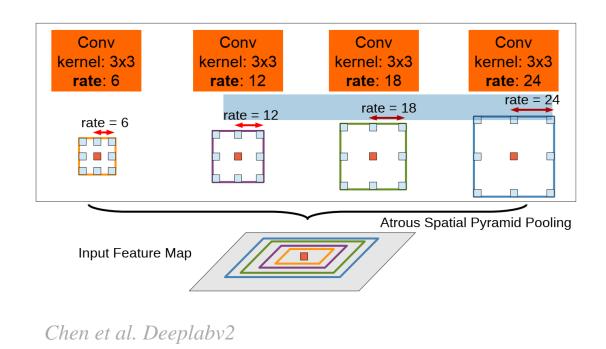


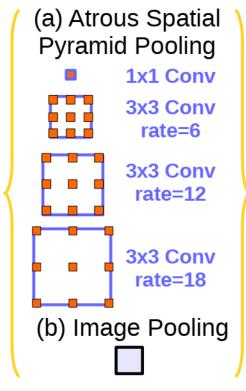
Yu et al. Multi-scale context aggregation by dilated convolutions

Small atrous rate \rightarrow Small field of view \rightarrow accurate localization Large atrous rate \rightarrow Large field of view \rightarrow context assimilation \rightarrow

Different values of atrous rate \rightarrow different sample locations of the convolution operation \rightarrow multiple effective fields of view \rightarrow capturing multi-scale context information

- Problem: Existence of objects at multiple scales
- Solution: Different values of atrous rate → different sample locations of the convolution operation → multiple effective fields of view → capturing multi-scale context information





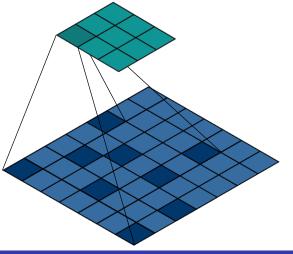
Chen et al. Deeplabv3

2020/4/2

Main idea

- Problem: existence of objects at multiple scales
- Solution of ASPP: Different values of atrous rate → different sample locations of the convolution operation → multiple effective fields of view → capturing multi-scale context information
- Our idea: Learned sample locations of the convolution operation → learned effective fields of view → capturing multi-scale context information adaptively
- Learn the sample locations
 - No need to decide the atrous rate manully solving issue 1
 - No need to sample the pixel in a rectangular solving issue 2
 - Tool: Deformable convolution

Dai et al. Deformable ConvNets v1 Zhou et al. Deformable ConvNets v2

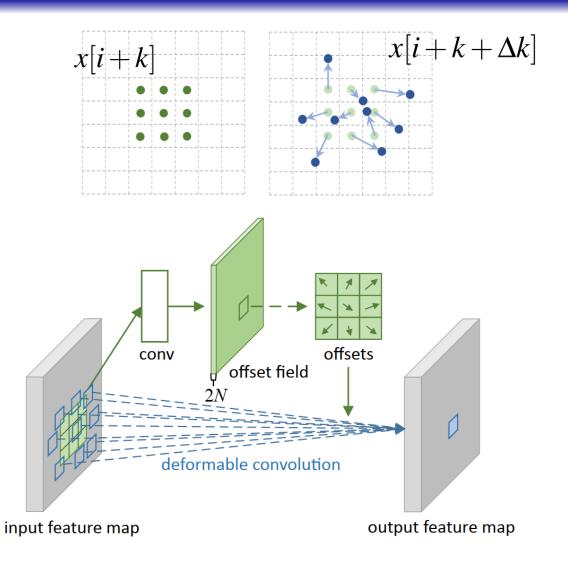


Main idea

Convolutional Kernel (3*3): $K = \{(-1, -1), (-1, 0), ..., (0, 1), (1, 1)\}$

- □ Standard convolution operation:
 - $y[i] = \sum_{k \in K} x[i+k] \cdot w[k]$
- □ Deformable convolution operation:

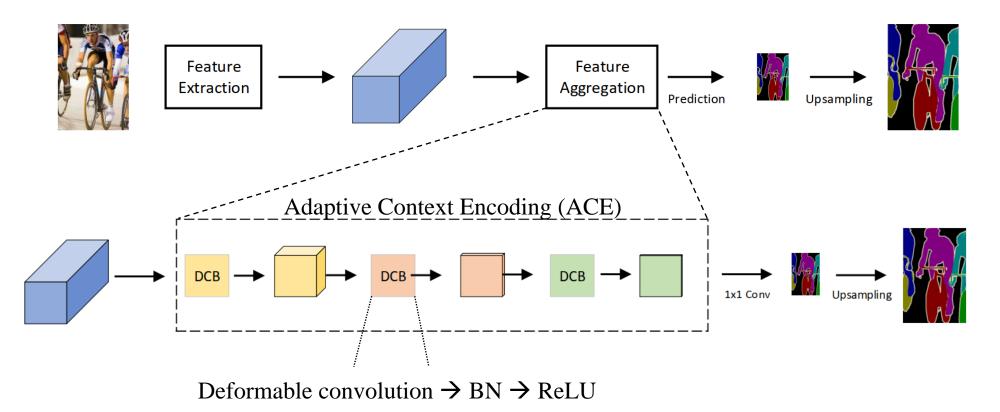
$$y[i] = \sum_{k \in K} x[i+k+\Delta k] \cdot w[k]$$



Dai et al. Deformable ConvNets v1

Main idea

• Network Architecture



Comparison to PSP and Deeplab

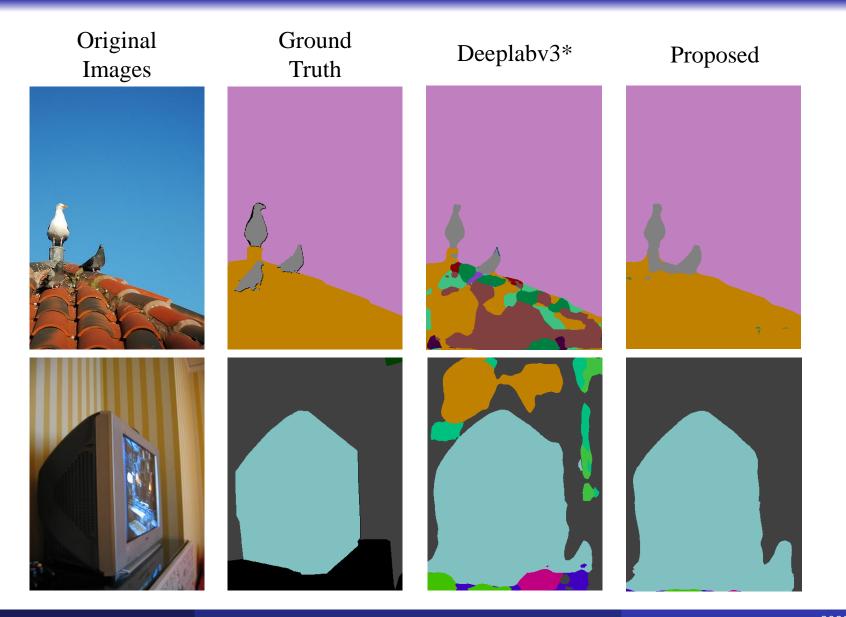
- Pascal-Context
 - 4998 training images
 - 5105 testing images
 - 59 object classes with background

Batch Size	Head	pixAcc%	mIoU%
4	ASPP	75.42	43.62
	PPM	75.58	45.68
	4 PPM 75.58 Proposed 77.68 ASPP 77.19 6 PPM 77.45	48.07	
6	ASPP	77.19	46.53
	PPM	77.45	48.32
	Proposed	78.35	49.36
16	ASPP	78.68	49.04
	PPM	78.41	49.54
	Proposed	78.85	50.35

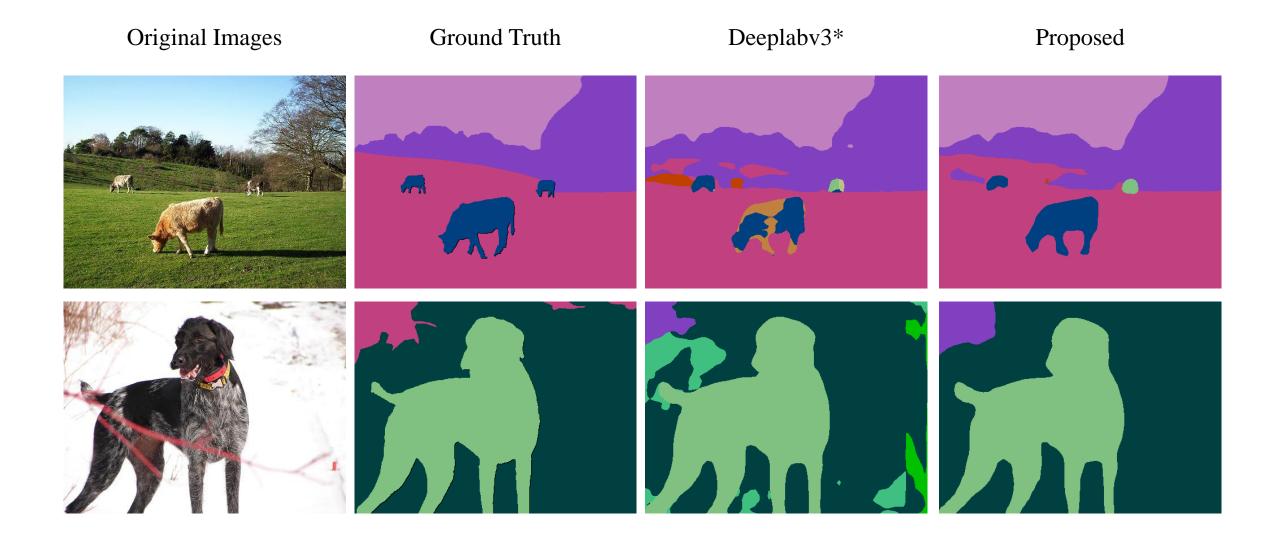
- ADE20k
 - 150 object classes
 - 20k images for training
 - 2k/3k images validation and testing

Batch Size	Head	pixAcc%	mIoU%
	ASPP	78.11	37.11
4	PPM	77.39	37.80
	Proposed	78.62	38.51

Some visual results



Some visual results



Comparison to state-of-the-art

• Pascal-Context

Method	mIoU%
FCN-8s [1]	37.8
ParseNet [26]	40.4
Piecewise [8]	43.3
Deeplabv2 (Res101-COCO) [3]	45.7
RefineNet (Res152) [9]	47.3
PSPNet (Res101) [13]	47.8
EncNet (Res101) [33]	51.7
DANet (Res101) [34]	52.6
FastFCN (Res101,EncNet)* [22]	53.1
Proposed (Res101)	53.6

* FastFCN backbone with EncNet *head*.

• ADE20K

Method	pixAcc%	mIoU%
FCN [1]	71.32	29.39
SegNet [4]	71.00	21.64
DilatedNet [35]	73.55	32.31
CascadeNet [18]	74.52	34.90
RefineNet (Res152) [9]	-	40.7
PSPNet (Res101) [13]	81.39	43.29
EncNet (Res101) [33]	81.69	44.65
FastFCN (Res101,EncNet)* [22]	80.99	44.34
Proposed	81.07	43.81

* FastFCN backbone with EncNet *head*.

Discussion & Conclusion

• An ACE module is proposed for semantic segmentation to capture multiscale context information.

More robust and better performance is achieved compared to ASPP and PPM modules.
State-of-the-art results on Pascal-Context and encouraging results on ADE20K is shown.

- The proposed context aggregation module can be easily embedded into other semantic segmentation networks for further improvement.
- Future consideration
 - □ Is deformable convolution operation the right tool?
 - □ Visual result indicates that the network prone to output smooth result and easy ignore small detail. How to explain and improve it?

Thank you