Multiscale deep desmoking for laparoscopic surgery
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MOTIVATION CONTRIBUTIONS
* Image quality can be severely degraded by surgical smoke « A CNN based srugical smoke removal approach.
* Introduces errors for the image processing algorithms (used in image guided surgery) Although trained on only synthesized dataset, the

*  Reduces the visibility of the observed organs and tissues proposed method can eliminate smoke effectively while

preserving the original colors.
Processing speed reaches 26 fps for a video of size
512x512 on a single NVIDIA 12GB Titan X GPU.

« Smoke removal methods

Aim: .
Automatic and real-time image processing

based smoke removal method.

. Mechanical solutions
. Image processing based approaches

METHOD
1. Image Pyramid Decomposition 2. Network Structure
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RESULTS
Training Dataset [ Quantitative evaluation on synthetic dataset
Manually selected 7553 smoke free i_mages, synthesized _an()ke Images Tab. 1. Average and standard deviation results for evaluation metrics.
via Blender and Adobe Photoshop with three smoke densities: low,
medium and high. Ifnrg‘;‘;z DCP2 | R-DCPB! | EVID® | VARBE | U-Net® |Proposed
Blender low [15.87 +1.17/15.25 + 1.52|18.59 + 1.60[20.90 + 1.50/16.90 + 2.08| 28.29+1.92 |28.58 + 1.84
| ' PSNR| medium |12.14 + 1.03|16.08 + 1.55(17.32 + 1.14/20.63 + 1.65/16.71 + 1.83/27.56+1.80 [27.91 * 1.69
| high [9.81+1.21(17.00 + 1.53|15.53 + 1.33|18.26 + 2.07/15.72 + 1.70| 26.54+1.72 [26.92 *+ 1.65
PhOtOSh)Op low [0.88+0.03|0.85+0.04|0.76 +0.03|0.92 +0.03|0.90 + 0.03 | 0.98+0.01 |0.99 * 0.01
' N e SSIM | medium | 0.77 £ 0.04 | 0.86 + 0.05 | 0.68 + 0.03 | 0.93 + 0.03 | 0.88 + 0.04 | 0.98+0.01 |0.98 * 0.01
medium high |0.65+0.07|0.87 +0.05|0.58 +0.05|0.91 + 0.04 | 0.83 + 0.06 | 0.97+0.01 |0.98 * 0.01
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Fig. 1. Subjective results of synthetic dataset
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Fig. 2. Subjective results of real smoke images

DISCUSSION
* Proposed method provides very good results on
synthized images, but the performance degrades on
real dense smoke images.

« Simulation of more realistic training dataset to improve
the results Is necessary.
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