Liver Surface Reconstruction for Image Guided Surgery

Congcong Wang¹, Faouzi Alaya Cheikh¹, Mounir Kaaniche², Ole Jacob Elle^{3, 4} ¹Norwegian Colour and Visual Computing Lab, Norwegian University of Science and Technology, Norway. ²L2TI-Institut Galilee, Universite Paris 13, Sorbonne Paris Cite, Villetaneuse, France. ³The Intervention Centre, Oslo University Hospital, Oslo, Norway.

⁴The Department of Informatics, University of Oslo, Oslo, Norway.

INTRODUCTION

Aim:

- Reconstruct 3D liver surface based on stereo vision technique.
- Serve as intra-operative information for pre-operative to intra-operative registration.

Image-based navigation systems ultimately based on image pre-processing,

segmentation, 3D modeling, registration and visualization techniques,

increase the ability of the surgeon to plan and perform surgery safely and

accurately.

Intra-operative

Dataset^[2]

• Cardiac phantom datasets with ground truth: *heart1* and *heart2*.

• Porcine liver datasets without ground truth: *liver1*, *liver2* and *liver3*.

Table. 1 MAE (mm) and % Match for phantom datasets *heart1* and *heart2*.

RESULTS

	heart1		heart2	
Methods	MAE(mm)	% Match	MAE(mm)	% Match
Proposed	2.16 ± 0.65	97.25 ± 1.13	2.14 ± 0.83	99.96 ± 0.11
QuasiDense ^[3]	2.33 ± 0.61	78.64 ± 2.00	2.26 ± 0.52	80.64 ± 1.87
FCVF ^[4]	4.43 ± 0.81	95.96 ± 1.57	4.21 ± 1.20	88.92 ± 2.38

Fig. 1 Overview of an image guided surgery system

Stereo laparoscopes have been introduced to provide a 3D view of the organ for the surgeons intra-operatively,

as well as to compute depth information of the organ.

liver2

Navigation

Fig. 2 Disparity results of *heart1* and *heat2*.

Variational Disparity Estimation

The gray values and gradient of the two corresponding pixels in the left and right images are the same.

Gray value

 $|I_{l}(i, j) - I_{r}(i - d_{i, j}, j)|$

Gradient

 $|\nabla I_{l}(i,j) - \nabla I_{r}(i-d_{i,j},j)|$

The organ surface is smooth, so we assume that the disparity is smoothly distributed.

 $|\nabla d|$

Pixel wise

Non-local

 $\sum_{(i,j)\in\Omega_d} \sum_{(i',j')\in N_{i,j}} |d_{i,j} - d_{i'j'}|$

2. Disparity Up-sampling

A modified bilateral filter^[1] is used for up-sampling.

- Proposed method outperforms
- QuasiDense^[3] and FCVF^[4] in terms of accuracy and % Match.

images: edge enhancement, etc.

Taking into account edge information and occlusion in the energy function.

[1] Chan, D., Buisman, H., Theobalt, C., and Thrun, S., \A noise-aware filter for real-time depth upsampling," in [M2SFA2], (2008).

[2] Hamlyn Centre Laparoscopic / Endoscopic Video Dataset, <u>http://hamlyn.doc.ic.ac.uk/vision/</u>. Accessed: 2017-10.

REFERENCES

[3] Stoyanov, D., Scarzanella, M. V., Pratt, P., and Yang, G.-Z., "Real-time stereo reconstruction in robotically assisted minimally invasive surgery," in [MICCAI], 275-282, Springer (2010).

[4] Hosni, A., Rhemann, C., Bleyer, M., Rother, C., and Gelautz, M., "Fast cost-volume filtering for visual correspondence and beyond," IEEE TPAMI, **35**(2), 504-511 (2013).

NTNU, P.O.Box 191, N-2802, Gjøvik, Norway

